
Bring Your Own Controller: Enabling

Tenant-defined SDN Apps in IaaS Clouds

Haopei Wang∗, Abhinav Srivastava†, Lei Xu∗, Sungmin Hong‡, Guofei Gu∗

∗‡SUCCESS Lab, Texas A&M University
∗{haopei, xray2012, guofei}@cse.tamu.edu, ‡ghitsh@tamu.edu

†AT&T Labs - Research, abhinav@research.att.com

Abstract—The need of customized network functions for enter-
prises in Infrastructure-as-a-Service (IaaS) clouds is emerging.
However, existing network functions in IaaS clouds are very
limited, inflexible, and hard to control by the tenants. Recently,
the introduction of Software-Defined Networking (SDN) technol-
ogy brings the hope of flexible control of network flows and
creation of diverse network functions. Unfortunately, enterprises
lose access to the SDN controller when they move to clouds.
Moreover, the cloud SDN controller is only managed by the
provider administrators for security and performance reasons.
To allow enterprise tenants to develop and deploy their own
SDN apps in the cloud, in this paper, we introduce a new cloud
usage paradigm: Bring Your Own Controller (BYOC). BYOC
offers each tenant an individual SDN controller, where tenants
can deploy SDN apps to manage their network. To manage these
tenant SDN controllers, we propose BYOC-VISOR, a new SDN-
based virtualization platform. BYOC-VISOR addresses several
security and performance challenges which are specific to IaaS
clouds. We show that BYOC-VISOR supports different controller
platforms and diverse SDN security applications such as firewall,
IDS, and access control. We implement a prototype system and
the performance evaluation results show that our system has low
overhead.

I. INTRODUCTION

Software-Defined Networking (SDN) [20] brings new op-

portunities to control and design enterprise networks by decou-

pling the control plane from the data plane. It uses the logically

centralized network operating system (a.k.a., SDN controller)

to flexibly and dynamically manage the forwarding behaviors

of the data plane. Due to these reasons, many network func-

tions are being built and deployed as SDN apps. There are

already many emerging SDN-based network tools/apps [14],

[29] that enterprises employ to manage routine networks.

Enterprises are also embracing elastic computing offered

via the cloud computing. Infrastructure-as-a-Service (IaaS)

clouds (such as Amazon EC2, Microsoft Azure, OpenStack,

and Google Compute Engine) provide enterprises with on-

demand computing resources along with networking and stor-

age capabilities. The pay-as-you-go model offered by the cloud

computing enables enterprises to conveniently scale up and

decrease resources to meet the peak demand. Cloud providers

themselves employ SDN technologies to enable multi-tenancy

by creating better management of tenants’ networks.

While both technologies, SDN and cloud computing, pro-

vide numerous benefits to enterprises, enterprises encounter

a difficult situation when they migrate to public clouds –

relinquishing control over their in-house SDN controller along

with the entire suite of SDN apps running atop it. The cloud

provider’s SDN controller that manages all OpenFlow-enabled

hardware as well as software switches is not accessible to

tenants. Despite tenants’ demand of diverse network functions

such as intrusion detection, access control, measurement,

traffic engineering, and QoS, most cloud providers only of-

fer elementary network functions such as ACL rules, load

balancing, or a software suite with limited customizability.

Losing access to the SDN controller deprives tenants of local

and third-party SDN apps that cater their needs. Therefore, a

cloud tenant desires an SDN controller to develop and deploy

arbitrary SDN apps.

To this end, in this paper, we present the design and

implementation details on our project called Bring Your

Own Controller (BYOC) that provides an SDN controller,

called User Controller, to each IaaS cloud tenant. The goal

is to allow tenants to manage a network consisting of their

own VMs by using the user SDN controllers onto which

they can implement customized network functions (either by

repurposing existing SDN apps or implementing new apps). To

manage these individual SDN controllers, we propose BYOC-

VISOR, a network virtualization platform which is tailored

to IaaS clouds and provides customized, secure, and scalable

services to tenants. Our conceptual architecture is illustrated

in Figure 1. BYOC-VISOR operates from the cloud control

domain and acts as a middleware layer. It provides a logical

control plane instead of the actual control plane to tenants.

The design to equip each tenant with an individual SDN

controller comes with several critical challenges – security,

privacy, performance, and scalability – that BYOC-VISOR

aims to solve. We present the main challenges and BYOC-

VISOR’s design to address them below:

1. Topology Abstraction: The cloud SDN controller op-

erates on the provider’s network topology to route flows

dynamically to tenant networks. However, tenant SDN con-

trollers cannot be given access to this topology as it would

reveal the sensitive infrastructure-level details to tenants. Many

attacks that target the cloud infrastructure (e.g., side channel

attack [27]) use sniffing the physical topology and config-

urations as a stepping stone. Moreover, relying directly on

the physical topology makes the tenants’ SDN applications

error-prone due to the dynamic nature of cloud systems.

Some recent work (e.g., [10], [19]) proposed to translate

physical topology to logical topology using loose-coupling



User 

Controller

BYOC-VisorService Provider 

Domain

Cloud 

Infrastructure
VMs Switches

Routing Storage

Computing

Logical Control 

Plane

Control Plane

Data Plane

Control Plane 
Messages

Data Plane 
Messages

Cloud Tenant

Network 

Functions

Fig. 1. BYOC-Visor Conceptual Architecture.

approaches. However, they suffer from poor performance, as

discussed in Section III. We attempt to provide balanced

trade-off between the flexibility and overhead. To solve this

problem, we abstract the underlying topology and create the

notion of a pseudo switch that is controlled by a tenant SDN

controller. The abstracted topology consists of a set of tenant

VMs connecting to a pseudo switch controlled by the tenant

SDN controller. BYOC-VISOR’s task is to map the abstracted

topology into the provider’s topology by programming the

underlying switches. The topology abstraction scheme (V-

Topo) prevents the leaking of sensitive provider’s topology

and provides the static view of the network even when the

tenant VMs are frequently migrated.

2. Performance: BYOC-VISOR needs to maintain the

communication between the tenant SDN controller and the

cloud data plane. In particular, each data plane message should

be delivered to the corresponding tenant controller (called

mapping step) according to the origin of the message. Given

the scale of a cloud system, if the mapping step is not efficient,

BYOC-VISOR becomes the bottleneck and stalls all tenants

network operations [28], [10]. This problem can also appear

when a malicious tenant floods the network with the spoofed

traffic from the VM to paralyze the cloud infrastructure. To

solve this challenge, we design a message tagging technique

called Message Cookie to improve the performance and defend

against the flooding attack.

3. Security: SDN controllers influence flow routes by

installing flow rules. The lack of a strong isolation among

tenant SDN controllers may facilitate one tenant’s flow rules

to impact other tenants network traffic. In particular, mali-

cious tenants can launch packet injection and forwarding loop

attacks (described in Section IV-D2 in detail). To provide a

fine-grained access control to restrict the malicious behavior

from user controllers, we design a Message Guard module to

monitor, profile, and filter undesired controller messages.

We incorporate all of our design choices in a prototype

system of BYOC-VISOR on the GENI [5] platform. BYOC-

VISOR supports multiple unmodified SDN controllers, such

as Floodlight [3], OpenDaylight [7], as a user SDN controller.

To demonstrate the efficacy of our system, we deployed many

existing unmodified SDN-based security applications atop

the user controllers. Our performance evaluation shows that

BYOC-VISOR has low overhead, and scales well in clouds.

In this paper, we make the following contributions:

• We highlight the problem of migrating SDN apps to

clouds, and introduce a new cloud use paradigm, Bring

Your Own Controller, which provides an individual SDN

controller to each tenant to design and deploy customized

SDN apps.

• We describe the challenges in realizing BYOC-VISOR

and present techniques– topology abstraction, message

cookie, and message guard– to overcome them.

• We implement a prototype system of BYOC-VISOR, and

test it with different SDN controller platforms and a va-

riety of applications. Our evaluation results demonstrate

that the system is efficient and effective.

Our paper constructs as follows. Section II provides the back-

ground knowledge and threat model. Section III introduces

some related work. Section IV presents our design of BYOC-

VISOR. Section V presents our prototype implementation and

evaluation results. Section VI discusses the limitation and

future work, and Section VII concludes the paper.

II. BACKGROUND & MOTIVATION

In this section, we provide some basic background of SDN

applications, motivating examples and our adversary model.

A. SDN Application Background

SDN and its reference implementation, OpenFlow [23],

bring convenient and flexible network management by sep-

arating the network control plane from the data plane. The

control plane is logically centralized and works as the network

operating system. In recent years, many SDN applications

have been proposed, such as measurement, firewall, IDS/IPS,

scanning detection, botnet detection, and DDoS detection [36],

[11], [22], [13]. Besides, researchers have also proposed high-

level interfaces such as FRESCO [29], Frenetic [14] to support

the development of SDN applications.

In general, SDN-based network applications operate by fol-

lowing a series of steps sequentially as summarized here. First,

the controller establishes the connection with the data plane

switches. Once the connection is established, the controller or

higher-level applications discover and maintain the topology

information by using PacketIn and PacketOut messages with

LLDP payload [17]. In the next step, the network applications

obtain required network data by installing flow rules and

retrieving performance counters. Finally, the SDN applications

respond to network events and take relevant flow control

actions (e.g. drop, set, forward) as per the enterprise policies

by installing flow rules into switches.

B. Motivating Example

We allow tenants to use a user controller in the cloud similar

to requesting other virtual resources such as VM, storage,

and networks. Tenants employ the SDN controller to develop

mainly two types of applications. In the first type, a tenant

deploys an SDN application in the user controller to achieve

certain network functionality. For example, a tenant needs to

detect malicious scanners and redirect them to a third-party



honeypot (reflector net app in [29]). The tenant can implement

the detection and redirection functions as an SDN application

in a user controller. In the second type of applications, tenants

deploy legacy appliances, such as middleboxes and virtual

network functions, in the cloud and use their SDN controller to

steer the flows towards the appliances. For example, a tenant

with a Snort IDS deployed in a VM steers the network flows

to the VM to monitor the traffic of other VMs. The key

difference between the two types of applications is that the

major processing phase occurs either in the controller or in

the data plane devices.

C. Network Model

The target of our work is multi-tenant cloud networks. A

multi-tenant cloud network provides individually separated

cloud services to each tenant on top of a shared physical

infrastructure. Our work assumes the entire physical network

topology which contains both hardware and software switches

is constituted in a typical Top-of-Rack or End-of-Row ar-

chitecture. Each individual cloud host contains a hypervisor

and multiple virtual machines (VMs). The hypervisor contains

an OpenFlow-enabled software virtual switch (Open vSwitch,

abbr. OVS) which connects VMs to tenant virtual networks.

D. Adversary Model

We assume that cloud providers and their physical infras-

tructure, including the cloud controller node and services

including BYOC-VISOR running inside it, are secure and

trusted. We provide each tenant with a user SDN controller

and several VMs. Once a powerful adversary who takes over

the VMs and/or the user SDN controller, he can launch a

variety of attacks, such as flooding, spoofing, or other denial-

of-service attacks on the cloud infrastructure and also affect

other tenants in the cloud. The design of BYOC-VISOR, as

described in Section IV, mitigates these attacks.

III. RELATED WORK

Network Virtualization: Network virtualization is a hot

research topic in recent years. One work very close to BYOC-

VISOR is FlowVisor [28]. While seemingly related, there are

some striking differences with our work. First, FlowVisor is

designed for the enterprise network under a single adminis-

trative domain, which is different from clouds that support

multiple administrative domains as targeted by BYOC-VISOR.

Second, FlowVisor creates parallel controllable networks by

slicing the physical resources including the network topol-

ogy. Since each FlowVisor slice reflects a part of the real

physical topology and configurations, the slicing solution will

not operate in the cloud as it does not address security &

privacy concerns outlined in Section I. Finally, the peak rate

of message processing in FlowVisor is about 1,200 per second

[28]. This throughput does not scale well in clouds, and it will

decrease with the scale of the data plane. Another system VeR-

TIGO [12] extends FlowVisor to allow the tenants to specify

virtual links. These two slicing solutions are considered to

have a tight coupling between physical and virtual topology.

A different approach is based on a loose coupling between

physical and virtual topology, allowing tenants to customize

the virtual topologies as adopted by OpenVirteX [10] and NVP

[19]. However, such solutions are too costly to be applied

in clouds due to the overload of flow rules and failure to

address the security threats. FlowN maps the NOX [16] API

calls instead of the OpenFlow messages and uses a database

instead of an in-memory complex data structure to reduce

the overhead. Some network-as-a-service solutions [24] allow

the tenants to specify the high-level routing policies for their

traffic. However, our work provides dynamic, fine-grained and

more flexible management through user controllers.

SDN Security: There are two main themes in the SDN

security research. The first theme consists of systems that

implement security logic in the control plane due to the

controller’s centralized view of the network. In this category,

a series of SDN-based network security tools have been pro-

posed [36], [11], [34], [22], [13]. The other theme addresses

several security challenges in the software-defined networks

itself. FortNOX [25] proposes a security enforcement kernel

to address the flow tunneling attack. Avant-Guard [31] and

FloodGuard [33] protect the OpenFlow control plane from

the saturation attack. Rosemary [30] protects the OpenFlow

control plane against malicious or faulty applications by in-

troducing a sandbox-based solution. TopoGuard [17] addresses

the network topology poisoning attack.

IV. SYSTEM DESIGN

In this section, we present BYOC-VISOR, a network virtu-

alization platform that provides customized, secure, and scal-

able SDN services to cloud users. BYOC-VISOR operates as a

network hypervisor and is transparent to both user controllers

and the cloud data plane.

A. System Architecture

The overall architecture of BYOC-VISOR is shown in

Figure 2. BYOC-VISOR consists of three main modules. The

User Controller Hypervisor virtualizes standard OpenFlow

interfaces for user controllers, monitors all communication

messages, and blocks malicious flow rules generated by user

controllers. The Topology Abstraction module achieves the V-

Topo by rewriting the control plane and data plane messages.

The Database module contains the profile and communication

record of user controllers, the mapping table between physical

and logical topology, and the message cookie information.

B. Topology Abstraction

We first describe our topology abstraction scheme.

1) Abstraction Solution: We introduce a new abstraction

solution called V-Topo that provides each user controller a

logical topology abstracted from the corresponding physical

topology. The abstraction scheme has two steps. The first step

is to decide on a physical topology representation for each

tenant, and the second step is to map the physical topology

to a logical topology as viewed by the user SDN controller.





transparently with the VM migration. During the migration

state, the user controller manager migrates the corresponding

flow rules and counters to the new location. If the migrated

VM changes its IP address, we also verify and update the

matching fields in each flow rule and counter.

C. Performance Improvement

We design Message Cookie technique to improve the scal-

ability of BYOC-VISOR and defend against certain security

threat. A message cookie has two main functions. First, it iden-

tifies the origin (from which VM) to handle spoofing threat.

Second, it improves the throughput of processing mapping

step.

1) Message Cookie: The throughput of the mapping step is

mainly affected by the processing of PacketIn messages. There

are two reasons. First, PacketIn messages are the majority

traffic to the controller triggered by new data plane traffic.

Second, for other messages, the processing could be easier

by using a request/response pair mapping (by searching the

pending request messages) to find the corresponding control

logic. Existing solutions (such as FlowVisor) use a flow space

mapping approach that forms an n-dimensional space based on

n bits in the network packet headers. Each tenant maintains an

isolated subspace that represents all packet headers belonging

to the tenant. Thus, to identify the owner of a flow, we need

a search algorithm to map from a high-dimensional packet

header space to a tenant subspace, which is inherently slow

and not suitable for large-scale cloud systems.

We introduce a novel technique, namely, Message Cookie,

to address the scalability challenge. Our approach is motivated

by the well-known SYN Cookie technique. The idea is to

enable switches to embed a tag to store the mapping state

information within the data-to-control plane messages. We

refer to the tag as Message Cookie. When generating PacketIn

messages, the switch can preserve mapping information into

the messages by leveraging the flow table pipeline. We can

utilize reserved fields such as 8 bit TOS field or unused IP

header options to embed the message cookie. For example,

a flow rule with “src/dst = 1.1.0.1, actions : set-tos-bits

= 52, output : controller” suggests that generated PacketIn

messages which satisfy the condition “src/dst = 1.1.0.1” will

be marked belonging to Tom (whose UseID is 52). With this

approach, it is possible to use a few flow entries to realize

the mapping at each switch. Compared with the traditional

flow space mapping approach, we distribute the computational

workload of mapping to multiple switches instead of a single

choke point. Therefore, our approach addresses the scalability

challenge and achieves much higher throughput.

2) Edge-based Optimization: The overhead of the message

cookie scheme depends on the location of the switches. In

particular, the backbone switches, such as ToR switches or

core switches, may need a large number of flow entries to

implement the tagging function, making it impractical due to

the limited memory space in each switch.

We propose an edge-based optimization approach to solve

the problem by implementing the message cookie only inside

the edge switches. An edge switch is a hypervisor software

switch (Open vSwitch) that is directly connected to VMs. We

note that the V-Topo’s (in Section IV-B) physical topology

also assumes the tenant VMs are connected to adjacent edge

switches. The reasoning behind the edge-based solution in an

IaaS cloud deployment is that each edge switch is normally

connected to no more than 30 VMs [35]. Thus, it is possible

to enforce efficient and simple tagging function at the edge

switches with low overhead (a few flow entries).

D. User Controller Hypervisor

1) User Controller Manager: The main function of the

User Controller Hypervisor is to virtualize interfaces for the

user controllers. The user controller manager leverages the

standard OpenFlow protocol to communicate with the user

controller. For the Connection Initiation and Topology Dis-

covery request messages, the manager automatically generates

the data-to-control plane messages to respond to the user con-

trollers. For example, in response to the negotiation messages

(FeatureReq/Res, SetConfig), the manager provides the config-

uration of the abstracted topology to the user controller. For

the OpenFlow messages in the attack detection and response

actions stages, the manager simply relays these messages.

Although the communication (we define as Hypercalls) be-

tween the manager and the user controller uses the OpenFlow

protocol, it is not a “real” OpenFlow communication; in fact,

it is between the cloud control plane and logical control plane.

2) Message Guard Module: Another major function of the

User Controller Hypervisor is to restrict the behaviors of user

controllers and enhance the security of our system by checking

the Hypercall messages. In each User Controller Manager,

there is a Message Guard module. This module continuously

monitors the hypercall communication and detects any possi-

ble malicious behaviors from user controllers. More specifi-

cally, the message guard module introduces several security

features including fine-grained access control, profiling, and

rate-limiting. In case of attacks, our system quickly blocks

the malicious tenant and removes all counters and flow rules

that are installed by the attacker. The cloud administrator can

gather detailed information on the identified malicious tenants

for further fine-grained analysis.

The message guard module limits the cumulative number

of both control-to-data plane messages and the rate of data-to-

control plane messages for each tenant. Limiting the control-

to-data plane messages is to restrict the data plane resources

that one user controller can consume. On the other hand,

limiting the data-to-control plane messages is to prevent the

flooding attack originating from VMs.

We also provide fine-grained access control on all control

messages generated by user controllers. The purpose of access

control is to guarantee the control logic enforced by one

tenant should not affect other tenants’ network traffic. The

message guard module monitors and verifies all control-to-data

plane messages. We only allow two types of control-to-data

plane messages, namely, FlowMod and StatsReq messages.

The FlowMod message is used to insert, modify, or delete





Fig. 5. Communication Bandwidth and Port Stats during Migration

on a NOX controller. We notice that BYOC-VISOR supports

the correct operations of all three original SDN-based network

functions on diverse OpenFlow controller platforms, without

any modification on the controller or app side.

Data-plane network functions: We deploy three different

legacy network applications, namely Snort [32], BotHunter

[15], and Bro [9]. We install these legacy applications in

three VMs as middle-boxes (a.k.a. NFV, Network Function

Virtualization). On top of the user controller, we develop an

SDN application using the FRESCO platform [29]. The SDN

application steers the network traffic destined to tenant VMs

towards the Snort/BotHunter/Bro VMs. When the middle-box

VMs accept the traffic, it steers them back to the destination

VM. In our testing, all scenarios work smoothly as expected.

These applications demonstrate the effectiveness of our system

in allowing tenants to design and deploy SDN apps. We also

hope that these examples would provide guidelines for tenants

to develop more such apps on BYOC-VISOR.

C. Dynamic Handling

We first test the ability of BYOC-VISOR to handle frequent

topology changes. We design an experiment to verify that

the logical topology observed by the user controller remains

unchanged even with the frequent VM migration. We build

experimental topology as shown in Figure 3 using the GENI

[5] platform and use two VMs with IP addresses 1.1.0.4 and

1.1.0.5. At the beginning, two VMs are connected to the same

switch. Later, one VM (1.1.0.5) migrates to switch 000042,

and then migrates again to switch 000034. We generate

communication traffic between the two VMs and record the

traffic rate. To verify that the V-Topo remains unchanged from

the user controller side, we send StatsRequest messages from

the user controller to the pseudo switch in V-Topo to query the

real time traffic rate at the port2, which is initially connected to

VM 1.1.0.5 and show the accumulated traffic in Figure 5. We

observe that the migration occurs twice at about 51s and 195s

because the bandwidth suddenly decreases to zero. During the

migration, there is no traffic passing through the port. The

results show that even when the VM moves to another location

2In Section IV-D2, we mention that we only allow the user controller to
query the flow statistics not the port statistics. Here we temporarily relax this
assumption only to conduct this experiment.

in physical topology, the VM is still connected to the original

port of the pseudo switch. The experiment results verify that

the logical topology observed by the user controller is stable

and BYOC-VISOR elegantly handles VM migration.

D. Performance Overhead

BYOC-VISOR inserts an additional middle layer and un-

avoidably adds extra overhead to the system. From the ten-

ants’ perspective, there is an additional latency while sending

and receiving messages. To quantify the latency overhead,

we evaluate the increased response time for the two most

commonly used OpenFlow request messages– PacketIn and

StatsReq/Res– with and without our system. The PacketIn

message is used for the data plane to send a network packet to

the control plane when a new flow arrives in or a flow entry

sends a specific flow to the controller. The StatsReq message

is from the controller to query the data statistic, and the data

plane returns a response message with the statistics.

For the PacketIn message experiment, we set up an environ-

ment with a VM with two network interface cards attached to

an OpenFlow-enabled switch in GENI. An OpenFlow appli-

cation continuously sends randomly generated packets (with a

rate of 100 packets per second) to the switch through one

interface. The application simultaneously receives PacketIn

messages from the other interface that is connected to the

OpenFlow control port of the switch. Thus, this application

is able to measure the response interval between sending the

packet and receiving the PacketIn messages. The evaluation

results are shown in Figure 6(a). We observe that without

BYOC-VISOR, the average delay between each pair of packet

and PacketIn is about 0.25ms. With BYOC-VISOR, the av-

erage delay increases to about 0.37ms. We note that this

communication overhead is mostly added only on the first

packet and gets amortized across the duration of the flow.

For the StatsReq/Res message experiment, we set up another

environment with a VM as an OpenFlow controller that con-

nects to several OpenFlow-enabled switches. An application

queries the flow statistics from the switches at a peak rate

supported by the hardware. The application also measures

the delay between each pair of request and response. The

evaluation result is shown in Figure 6(b). We notice that

without BYOC-VISOR, the average delay is about 0.45ms,

and with our system is 0.52ms, which is a reasonably small

overhead.

E. Scalability

To evaluate the scalability of BYOC-VISOR, we create a 3-

machine setup as described in Section V-A. All user controllers

run a firewall app. We first determine the CPU utilization

of BYOC-VISOR under normal circumstances except the

migration situation. We measure the CPU utilization when

using a different number of user controllers and message

rates. To measure the effect of different message rates, we

use one VM to continuously send packets at different rates to

the OVS to trigger PacketIn messages for the user controller.

To measure the effect of various numbers of user controllers,



(f) Compare the Throughput with FlowVisor(d) Different # of User Controllers

(c) Different Message Rate(b) Flow Stats Latency(a) New Flow Latency

(e) Throughput Evaluation of BYOC-Visor

Fig. 6. Performance and Scalability Evaluation Results

BYOC-VISOR connects to several user controllers and sends

messages to each user controller at a constant rate. We measure

the CPU utilization at every one second for an extended

period of time and calculate the average. Since different types

of hardware devices may have different capabilities, it is

both difficult and insignificant to compare the absolute CPU

utilization among them. A better metric is to observe a growth

in CPU utilization with an increase in message rates and the

number of user controllers. Thus, in this experiment, we show

the CPU utilization growth using the relative CPU utilization

and compare it with a baseline value. The baseline utilization

value is generated using 100 MPS (messages per second) in

the first experiment, and a single controller in the second

experiment.

The results are shown in Figure 6(c)(d). We observe that

the CPU utilization scales linearly with the number of user

controllers and message rates. This is consistent with the

theoretical analysis, and is an acceptable growth trend. In

practice, cloud administrators may deploy multiple instances

of BYOC-VISOR to balance the load among tenants.

Secondly, we measure the message mapping throughput.

One benefit of message cookie is to avoid searching the entire

mapping flowspace for each PacketIn message. This suggests

the throughput of the message mapping process should not be

affected by the scale of the data plane topology. To validate the

hypothesis, we set up a message throughput experiment, using

a benchmark tool Cbench [1] to evaluate the throughput with

different scales of topology (by increasing the number of OVS

switches and VMs in the topology). In our testing topology,

each OVS connects to 8 VMs, while each user controller

manages 4 VMs, randomly assigned to it.

Like the CPU utilization experiment, we measure the rel-

ative growth in throughput instead of comparing the abso-

lute values. We measure the baseline throughput using the

Floodlight controller, without running BYOC-VISOR, in a 16-

switch topology. We evaluate a relative throughput compared

with the baseline by scaling the topology from 4-switch to

1024-switch and executing a single instance of BYOC-VISOR

in a single thread. The results are shown in Figure 6(e).

We observe that the throughput is not impacted with the

topology scale, outperforming FlowVisor whose throughput

decreases linearly under the same condition as described in

[28]. The results prove that our system scales well with a large

number of switches in a cloud environment. There are several

studies about the OpenFlow controller performance [2], [30].

These studies measure a baseline throughput of the Floodlight

controller in a dedicated server machine using the same 16-

switch topology, and the value is about 100k messages per

second. Using the same method, we estimate that BYOC-

VISOR can process about 70k messages per second.

Finally, we design an experiment that measures the through-

put performance using the different number of user controllers

to directly compare with FlowVisor. We simply use one

user controller corresponding to one slice in FlowVisor. In



this experiment, we use the 16-switch topology and test the

message throughput of both single thread BYOC-VISOR and

FlowVisor. Each user controller/slice manages the traffic from

8 VMs. We set the baseline value same as in the previous

experiment and show the relative throughput in Figure 6(f).

The results verify that the throughput of FlowVisor decreases

with the topology scale, which is the same as the theoretical

results mentioned previously [28]. However, the throughput of

BYOC-VISOR does not decrease with scale. Message cookie

distributes the computation workload to the edge switches,

making the throughput independent of the topology scale.

VI. DISCUSSION AND FUTURE WORK

Our current implementation of BYOC-VISOR supports

the OpenFlow v1.0 protocol. We plan to support the latest

OpenFlow v1.5 in our future work. Also, the user controller

may have the inconsistent update issue that implies all switches

cannot be updated atomically. Note that this issue is within

each individual user controller, and it is not the responsibility

of BYOC-VISOR. User controllers can directly leverage the

existing solution [26] to address the inconsistent update issue.

Finally, we implement the message cookie by installing flow

rules to add a tag to each message. This approach avoids any

hardware-level changes, creating a flexible yet less optimal

solution. Alternatively, we can improve the performance by

modifying the OpenFlow switches to enforce the message

cookie function in the circuit to avoid extra flow tagging rules.

VII. CONCLUSION

We aim to provide tenant-defined SDN applications in IaaS

cloud networks. To this end, we offer an individual user SDN

controller to each tenant. This approach requires addressing

several new challenges: topology abstraction, performance,

and security. We present BYOC-VISOR, a new SDN virtu-

alization platform to provide customized and scalable SDN

services to cloud users. We measure the overhead and scalabil-

ity performance with a prototype implementation of BYOC-

VISOR. Our evaluation results show that BYOC-VISOR scales

well in the cloud and only adds minor latency overhead.

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported in part by the

the National Science Foundation (NSF) under Grant no. CNS-

1314823 and ACI-1642129, and a Google Faculty Research

award. Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and

do not necessarily reflect the views of NSF and Google.

REFERENCES

[1] Cbench Controller Benchmarker. https://github.com/andi-
bigswitch/oflops/tree/master/cbench.

[2] Controller Performance Comparisons. http://archive.openflow.org/
wk/index.php/Controller Performance Comparisons.

[3] Floodlight Controller. http://www.projectfloodlight.org/floodlight/.
[4] Floodlight Firewall Module. https://github.com/floodlight/floodlight/

tree/master/src/main/java/net/floodlightcontroller/firewall.
[5] GENI: Global Environment for Network Innovations.

https://www.geni.net/.
[6] Libfluid: The ONF OpenFlow Driver.

[7] OpenDaylight Controller. http://www.opendaylight.org/.
[8] OpenFlow Firewall Application. https://github.com/hip2b2/poxstuff/blob/

master/of firewall.py.
[9] The Bro Network Security Monitor. https://www.bro.org/.

[10] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow. Openvirtex: Make your virtual sdns
programmable. In HotSDN, 2014.

[11] J. R. Ballard, I. Rae, and A. Akella. Extensible and Scalable Network
Monitoring Using OpenSAFE. In WREN, 2010.

[12] R. Doriguzzi Corin, M. Gerola, R. Riggio, and F. De Pellegrini. Vertigo:
Network virtualization and beyond. In EWSDN, 2012.

[13] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei: Flexible and
elastic ddos defense. In USENIX Security, 2015.

[14] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A Network Programming Language.
In ICFP, 2011.

[15] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. Detecting
malware infection through ids-driven dialog correlation. In USENIX

Security, 2007.
[16] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. Nox: towards an operating system for networks. In ACM

CCR, 2008.
[17] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility in

software-defined networks: New attacks and countermeasures. In NDSS,
2015.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In NSDI, 2013.

[19] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,
S. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network virtualization in multi-tenant datacenters. In NSDI, 2014.

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation
in campus networks. In ACM CCR, April 2008.

[21] Mininet. Rapid prototyping for software defined networks.
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/.

[22] A. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: Dynamic
Access Control for Enterprise Networks. In WREN, 2009.

[23] OpenFlow. Innovate Your Network. http://www.openflow.org.
[24] L. Peterson, S. Baker, M. D. Leenheer, A. Bavier, S. Bhatia, M. Wawr-

zoniak, J. Nelson, and J. Hartman. Xos: An extensible cloud operating
system. In BigSystem, 2015.

[25] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
security enforcement kernel for openflow networks. In HotSDN, 2012.

[26] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In ACM SIGCOMM, 2012.

[27] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds. In CCS, 2009.

[28] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar. Can the production network be the testbed? In
OSDI, 2010.

[29] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.
Fresco: Modular composable security services for software-defined
networks. In NDSS, 2013.

[30] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. Rosemary: A robust, secure, and high-
performance network operating system. In CCS, 2014.

[31] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable
and vigilant switch flow management in software-defined networks. In
CCS, 2013.

[32] Snort. . http://www.snort.org/.
[33] H. Wang, L. Xu, and G. Gu. Floodguard: A dos attack prevention

extension in software-defined networks. In DSN, 2015.
[34] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang. Netfuse:

Short-circuiting traffic surges in the cloud. In ICC, 2013.
[35] Z. Xu, H. Wang, and Z. Wu. A measurement study on co-residence

threat inside the cloud. In USENIX Security, 2015.
[36] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.

Madhyastha. Flowsense: Monitoring network utilization with zero
measurement cost. In PAM, 2013.


